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Abstract
Although extremely helpful in improving the ac-
curacy of deep neural networks, the process of
data augmentation comes at a cost during train-
ing time. In this paper, we look for ways
to separate augmentations from the main train-
ing pipeline so as to make the training pro-
cess more efficient. We explore and compare
multiple approaches to achieving this – includ-
ing augmentation-invariant embeddings and fine-
tuning. We found that augmentations are more
easily learned in higher-level layers, and we use
this observation to propose a general framework
for factoring augmentations out of the main train-
ing pipeline.

1. Introduction
One of the shortcomings of deep learning is its reliance on
high volumes of input data. Extensive training data can be
hard to acquire, and furthermore, it might not fully cover
all the types of inputs that might be seen at test time which
can lead to poor generalization. Data augmentation is a
technique that is commonly used to mitigate these issues
– it involves artificially extended the training data using
label-preserving transforms (for example, an image of a cat
might be rotated, translated, or flipped horizontally, yet it
still remains an image of a cat).

Having access to augmented data enables models to gener-
alize better, since they can then train using examples that
they otherwise would not have seen. This improvement,
however, cannot be obtained for free; it comes with the
added cost of increased training time, since the network
now has to learn from a larger dataset.

In this paper, we try to ‘factor out’ augmentations from the
main training pipeline in the hopes of reducing the overall
cost of training. Our approach is driven by the fact that aug-
mentations of the same data point share a lot of semantic
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information, and their features need not be re-learned re-
peatedly by the whole network. Instead, we look for ways
to learn invariance to augmentations as a component that
can be easily added to any conventional training pipeline.

To prototype our ideas and test our hypotheses, we picked
the task of rotated image classification. We tried keep every
part of our approach as general and transferable as possible,
so that it can be applied to augmentations other than rota-
tions, and domains other than images. Our first approach
relies on Triplet networks to learn an embedding that is
invariant to augmentations. Through several experiments,
we observed several interesting patterns of behavior and re-
shaped our approach accordingly. Eventually, we propose
a general technique that can be used to ‘teach’ a network
about augmentations without using as many computational
resources as the conventional data augmentation approach.

2. Related Work
An approach that resembles ours is transformation-
invariant pooling (TI-Pooling) (Laptev et al., 2016). Inputs
and their geometric transformations are first passed in par-
allel through an initial set of layers, followed by a special
max-pooling layer that learns transformation-invariant fea-
tures. The output is a canonical representation of the orig-
inal example and its transformations, which is then used to
train the rest of the network.

The TI-Pooling method itself bears a strong resemblance
to the previously proposed Spatial Transformer Network
(STN). STNs add a special module to the network archi-
tecture that can learn invariance to a specified class of im-
age transformations. (Jaderberg et al., 2015). While such
approaches have successfully been able to encode invari-
ances, they necessitate changes in the neural network ar-
chitecture that may not always be feasible with other less
straight forward transformations and augmentations.

There have been additional specialized attempts in the past
to make neural networks invariant to certain types of in-
put transformations. For example, to gain rotational invari-
ance, (Zhou et al., 2017) introduce Active Rotating Filters
(ARFs) as an alternative to regular convolutional filters. Al-
though ARFs are able to effectively capture rotational in-
variance, it is a highly specialized technique that cannot
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Kernel Size Output

Conv Block 1 3× 3× 1× 4 14× 14× 4
Conv Block 2 3× 3× 4× 8 7× 7× 8
Conv Block 3 3× 3× 8× 16 4× 4× 16
FC 1 256× 10 10

Figure 1. The 28 × 28 × 1 input image is fed into a set of three layers, each of which consists of successive 3 × 3 convolution, 2 × 2
max-pooling, and ReLU units. The first, second, and third layers output 4, 8, and 16 channels respectively. We call this initial section
of the network ftriplet. The output of ftriplet is of shape 4 × 4 × 16, and feeds directly into a fully-connected layer with 10 outputs.
These outputs are passed through a Softmax layer to obtain the final classification probabilities. We call this latter section of the network
fclassify . The first two layers of the network are called flow. The last convolutional layer and the fully-connected layer are called fhigh.

easily generalize to other types of input transformation.

We draw inspiration from all of these approaches, with the
added constraint of finding a technique that can be applied
to any arbitrary types of augmentation, and can be inte-
grated into any network architecture.

3. Background
3.1. Triplet networks

To learn augmentation invariance, we attempt to learn a
function from the data domain to an embedding space in
which augmentations of the same data point lie close to
each other.

Conventionally, Siamese and Triplet networks have been
used to learn embeddings that obey a desired distance met-
ric. Siamese networks learn embeddings by reducing the
distance between pairs of examples (Bromley et al., 1994).
While Siamese networks have been used in the past for
image recognition tasks (Koch et al., 2015), Triplet net-
works have yielded more success by enforcing a similarity
as well as dissimilarity constraint (Hoffer & Ailon, 2014).
In a Triplet network, three inputs are fed through the same
embedding network: an anchor, a positive, and a nega-
tive. The objective of the embedding network is to for-
mulate an embedding space where similar entities are close
together, and dissimilar entities are far apart. Triplet net-
works have recently been successfully applied to tasks such
as face recognition (Schroff et al., 2015) and person re-
identification (Hermans et al., 2017).

The addition of margins to triplet loss (Schroff et al., 2015)
and hard-mining (Hermans et al., 2017) to Triplet networks
have resulted in significant improvements. Adding a mar-
gin constraint improves the quality of embeddings by en-
forcing a certain distance between the embeddings of the
positive and negative inputs relative to the anchor input.
Hard-mining actively looks for hard triplets to feed into the
network so that it can learn valuable information in every
iteration, rather than seeing easy, trivial triplets.

3.2. t-SNE Visualization

To visualize the embeddings learned by the Triplet net-
work, we use the t-Distributed Stochastic Neighbor Em-
bedding (t-SNE) algorithm (van der Maaten & Hin-
ton, 2008). t-SNE is popularly used to visualize high-
dimensional data because of its ability to find a faithful
representation of the data in lower-dimensional spaces. We
used a SciPy implementation of t-SNE to create our visual-
izations.

4. Methods
4.1. Dataset Generation

To evaluate our methods, we decided to consider images,
since many deep learning applications are fed images as
input. Specifically, we construct our own variation of the
MNIST dataset using an approach similar to that of (Zhou
et al., 2017). We consider rotational augmentations – one of
the most common types of augmentations used on images.
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To make the effect of data augmentation more pronounced,
we create a variation of the MNIST dataset called MNIST-
tilt. Examples from the original MNIST dataset were
randomly rotated by an angle in the range

(
−π

6 ,
π
6

)
. We

further created MNIST-tilt+, where every training sample
from MNIST-tilt was augmented with 4 rotations, by an-
gles −π

6 , − π
12 , π

12 , and π
6 . Note that MNIST-tilt+ contains

5 times as many examples as MNIST-tilt.

4.2. Network Architecture

For all of our experiments, we fix the network architecture
to that shown in Figure 1. ftriplet is the section of the net-
work that serves as a Triplet network when we learn an
embedding space. fclassify is the section that is respon-
sible for generating a classification prediction. The early,
lower layers of the network are denoted by flow, while the
later, higher layers are called fhigh.

4.2.1. TRIPLET NETWORK ARCHITECTURE

A Triplet network is called so because it contains three
copies of the same set of underlying network weights. In
our case, the ftriplet layers provide these network weights.
To train the network, three inputs – together called a triplet
– are fed into the three network replicas. Triplets consist
of an anchor input xa, a positive input xp, and a negative
input xn. The network outputs a result for each of the three
inputs, and these results are used to formulate the loss func-
tion, which is described below.

4.3. Training

4.3.1. TRIPLET NETWORK LOSS

To train the Triplet network, we experimented with two
types of loss functions: Softmax, and triplet loss with soft
margin. We define Di,j = D(ftriplet(xi), ftriplet(xj)),
where D measures the L2 distance between two given in-
puts. Let d+ = Da,p and d− = Da,n.

1. Softmax loss, as described in (Hoffer & Ailon, 2014),
applies the Softmax function to d+ and d− to obtain
the values p+ and p−. The final loss is defined as
follows:

Lsoftmax(p+, p−) = p2+

This formulation effectively looks at each triplet as a
2-class classification problem, while trying to answer
whether the anchor is part of the positive or negative
class.

2. Triplet loss with soft margin, as described in (Her-
mans et al., 2017):

Lsoft triplet(d+, d−) = ln(1 + ed+−d−)

This loss function encourages the network to push the
negative embeddings far away from the anchor, while
pulling the positive embeddings closer to the anchor.

On trying both of these loss functions, we consistently
achieved better results with the soft margin Triplet loss, and
thus fixed it as our Triplet network’s loss function for the
evaluations. For the rest of the paper, we refer to the Triplet
network’s loss function as Lembed = Lsoft triplet, since it
is responsible for learning an embedding.

4.3.2. TRIPLET NETWORK BATCHES

The triplet generation process is crucial to learning the de-
sired embedding space. In our case, we want the embed-
ding to be invariant to image augmentations. Thus, we want
augmentations of the same image to lie close together. As
a first attempt, we tried random triplet generation. We se-
lected an image from MNIST-tilt as xa and an augmented
version of xa from MNIST-tilt+ as xp. For xn, we se-
lected a random image from MNIST-tilt+ that was not an
augmentation of xa.

Using this method, we found that the network does not
learn a useful embedding since a majority of the triplets it
sees are easy. To combat this, we incorporated batch hard-
mining (Hermans et al., 2017) into our approach.

Batch hard-mining involves first generating a batch of im-
ages of sizePK, whereK examples are sampled from each
of the P chosen classes. In our adaptation of this technique,
two images are considered to be part of the same ’class’ if
they are augmentations of each other. Then, each of the
PK examples is considered as the anchor of a triplet. For
each one, the hardest positive and hardest negative exam-
ples within the batch are found to form a triplet. In our case,
we achieved the best results using a relaxed version of this
approach. Instead of picking the hardest negative example,
we randomly pick a negative example from the hardest 20%
of candidate images. Without this, our network – perhaps
due to its limited capacity – tended to diverge in the early
stages of training.

4.3.3. CLASSIFICATION LOSS

We use cross-entropy loss as our classification loss. If p
represents the Softmaxed output and y represents the one-
hot ground truth vector, the loss function can be described
as:

Lclass = −
∑
i

yilog(pi)

4.3.4. OVERALL PROCESS

We experimented with two different overall training proce-
dures, as described below:
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Figure 2. t-SNE visualization of pixel space (left) and the learned embedding space after 10000 iterations (right). 10 examples – one
from each digit – are chosen, along with their 4 augmentations each within the dataset. Each of the 10 examples is represented by a
single color, so points of the same color are augmentations of each other. In pixel space, augmentations are often very scattered. The
embedding space, although not perfect, does seem to help in bringing augmentations closer to each other.

1. Init(e, c): Train ftriplet for e iterations to minimize
Lembed. Use this as an initialization for c end-to-end
iterations to minimize Lclass.

2. Fine-Tune(c, e), shortened as FT(c, e): Train the net-
work end-to-end for c iterations to minimize Lclass.
Freeze flow, and train fhigh for e iterations using the
following hybrid loss function: Lft = αLclass+(1−
α)Lembed For our evaluations, we found it best to set
α = 0.9.

We used the Adam optimizer (Kingma & Ba, 2014) with
default parameters while training. Dropout with p = 0.5
was used in all evaluations.

5. Results
5.1. Can triplet networks learn such an embedding?

As the first step, we checked whether the Triplet network
was even capable of learning an embedding where augmen-
tations lie close to each other. To do so, we trained ftriplet
for 10000 iterations starting from a random initialization,
and monitored the embedding loss to ensure convergence.
A visualization of the learned embedding space compared
to pixel space is shown in Figure 2.

5.2. Is this embedding useful for classification?

The next question we looked to answer was whether this
learned embedding was of any use or not for the task of
classification. To do so, we used the training procedure

Init(5000, 5000). The first 5000 iterations were dedicated
to learning an augmentation-invariant embedding. The next
5000 iterations started with the learned embedding network
as an initialization, and looked to minimize the network’s
classification loss. We tracked the embedding loss (shown
in Figure 3) throughout this run to assess whether the clas-
sifier found the initialization useful or not.

Figure 3. Embedding loss (y-axis) plotted against training itera-
tions (x-axis) for the Init(5000, 5000) run. At iteration 5000, the
network starts minimizing Lclass instead of Lembed

As the figure shows, when the network starts learning to
classify, there is an abrupt increase in embedding loss. This
is an indication that the classification objective does not
find the embedding initialization useful; the embedding is
unlearned once the classification training starts. This result
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might be explained by a few different hypotheses:

1. Learning augmentation invariance before learning
anything about how certain classes look might not be
a good idea. Understanding augmentations is depen-
dent on a good understanding of the input’s semantics,
which can only be gained through prior classification
training.

2. Imposing the augmentation invariance constraint on
the early layers of the network might not be the way
to go. The earlier layers might be better off extracting
lower-level features. The concept of augmentations is
one that is easier to encode in the higher layers that
have access to more semantic information.

3. The optimal arrangement of the embedding space for
the classification task may not involve putting all aug-
mentations of the same image close together. With
that in mind, the embedding loss might be better used
as a regularizer rather than the dominant objective.

5.3. An alternative approach

To fix the potential issues underlying the previous ap-
proach, we decided to come up with an alternate training
process. The FT(c, e) training procedure stems directly
from the three hypotheses presented above. Firstly, it only
attempts to learn about augmentations after it has learned
sufficient features for basic classification on the original
data. Secondly, the embedding constraint is only imposed
on the higher layers of the network. Thirdly, we useLembed
simply as a regularizer for Lclass rather than as its own ob-
jective function.

We run FT(5000, 5000) and compare its validation accu-
racy to two baselines approaches. The first baseline, B, is
the same network architecture trained end-to-end for 10000
iterations to minimize Lclass, with the constraint that its
training data comes exclusively from MNIST-tilt. The sec-
ond baseline, B+ is the same as B except it additionally
sees augmented examples from MNIST-tilt+. Figure 4
summarizes the results of this comparison.

As the figure shows, FT(5000, 5000) benefits from an in-
crease in accuracy once it begins to minimize Lft instead
of purely minimizing Lclass. In fact, the 5000 fine-tuning
iterations help it achieve an accuracy close to that of B+,
which has been trained on augmentations from the very first
iteration. It is worth noting that since the 5000 fine-tuning
iterations of FT(5000, 5000) only train a subset of the net-
work’s layers, it carries out far fewer weight updates com-
pared to the two baseline methods.

This result is a sign that learning about augmentations need
not involve training all the layers of the network. Instead,

Figure 4. Validation accuracy (y-axis) of FT(5000, 5000) (or-
ange), baseline B (blue) and baseline B+ (red) plotted against
10000 training iterations (x-axis). The fine-tuning phase starts at
iteration 5000, and this corresponds to a marked jump in accuracy
of the FT network.

it might be sufficient to only show augmentations to the
higher layers.

5.4. Is the embedding constraint important?

With this result, we aimed to isolate the cause of this ac-
curacy jump in the fine-tuning phase. In this phase, the
network begins to see augmentations for the first time via
the Triplet network’s embedding constraint. An increase in
accuracy is noted in this phase; however, what role does the
embedding constraint play in achieving this improvement?

To assess how the embedding constraint is impact-
ing model performance, we trained the network using
Augmentation-FT(5000, 5000) – a slightly tweaked version
of FT (5000, 5000). In this version, we impose no embed-
ding constraint at all. All 10000 iterations aim to minimize
Lclass, but the first 5000 iterations draw examples from
MNIST-tilt only, while the subsequent iterations addition-
ally see augmentations from MNIST-tilt+. Augmentation-
FT achieves a higher test accuracy compared to not just FT,
but also B+ (Table 1). This points towards the fact that the
embedding constraint that we formulated may not be very
helpful during classification.

The eventual test accuracies of the training variations dis-
cussed are presented in Table 1.

Table 1. Test accuracy on MNIST-tilt of different training proce-
dures after 10000 iterations each.

B B+ FT Aug-FT

Test accuracy 0.700 0.796 0.766 0.813
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5.5. Proposed framework

Our proposed framework for factoring out image augmen-
tations from the main training pipeline follows directly
from the Augmentation-FT result from above. We believe
that there are huge potential training cost savings if one fol-
lows the procedure below:

1. Train the network without showing it any augmented
data

2. Train only the highest layers of the network using aug-
mented data

6. Discussion
6.1. What we learned

Our initial idea was to learn embeddings in an
augmentation-invariant space, and to then use this learned
embedding to train a classifier. As we repeatedly reshaped
our proposed technique through multiple experiments, we
learned a few important things:

1. Imposing such an embedding constraint does not nec-
essarily align with the internal representation learned
organically by convolutional neural networks.

2. Invariance to augmentations is better learned after ba-
sic features of the data have already been learned.

3. One can get away by showing augmentations only to
higher layers of the network that have access to se-
mantic information. This can be used to gain poten-
tially huge training cost savings.

6.2. Future directions

6.2.1. GENERALIZATION

Our proposed framework does not contain any components
specific to certain types of augmentations, input domains
or tasks. Therefore, the natural next step is to evaluate it in
different settings to see if it generalizes.

6.2.2. QUANTIFYING COST SAVINGS

Being able to quantify the actual training cost savings of
such an approach in terms of floating point operations per
second or training time would also be an important next
step.

6.2.3. IMPACT ON MODEL ROBUSTNESS

As (Papernot et al., 2015) showed, learning a decision
boundary in a smoother space can help increase a model’s
robustness to input perturbations. Motivated by the t-SNE
projection of augmentations in pixel space (Figure 2, left)

where augmentations of the same image often lie far apart,
we believe that training a network end-to-end on augmen-
tations might hurt its robustness. If the network has to learn
a very jagged decision boundary in pixel space to capture
augmentations, it might end up being more susceptible to
perturbations. An interesting evaluation in the future could
be assessing the impact of data augmentation on model ro-
bustness, and further comparing our proposed approach to
the conventional augmentation approach based on that pa-
rameter.

7. Conclusion
Through this work, we were able to arrive at a technique
that can potentially help neural networks gain invariance to
augmentations while making the training process more effi-
cient. While the method still needs to be extensively tested
across different types of augmentations, different input do-
mains, and different tasks, the process of coming up with
it has taught us a lot about the nature of augmentations and
convolutional neural networks.

If validated, such a technique is exciting to us because it
would allow us to think of augmentation invariance as a
module that can be ‘applied’ to neural networks, rather than
being deeply integrated into the training pipeline. Simulta-
neously, the cost savings of such a method could possibly
help in accelerating the training process, which is often a
roadblock for applications in industry.
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8. Appendix
8.1. Source Code

This research was done using TensorFlow. Code
has been made publicly available on GitHub
(github.com/sammyjmoseley/embedding-research)

8.2. Distillation

In addition to the above approaches, we attempted to distill
an embedding for augmentations from a trained network.
Distillation has been shown to be effective in transferring
knowledge from trained models to smaller models (Hinton
et al., 2015). In the distillation approach, we try to dis-
till the implicit embedding created by a convolutional net-
work trained on MNIST, to a similar architecture trained
on MNIST-tilt such that the rotated images (which can
be thought of as augmentations) are mapped close to their
original MNIST images.

We first train one model to classify MNIST images. Then,
we create a network with two different child networks.
One child network is the embedding part of the pre-trained
MNIST classifier, and the other is a new network that we
wish to use to embed augmentations. We freeze the pre-
trained network and feed into it a reference image. We then
feed into the new embedding network an augmented form
of the reference image, and try to minimize the L2 distance
between the two network outputs.

We tried several different embedding networks. We found
that using the same architecture as the frozen network was
not adequate in capturing the complexity of the augmen-
tations. To sufficiently embed the augmentations, we used
a network consisting of three convolution-max-pool blocks
with 10 times the number of filters as the original network,
followed by two fully-connected layers.

After we trained the new embedding network, we trained
it along with the final readout layers on non-augmented
data once more, to help account for differences between the
original embedding space and the newly trained embedding
space.

The results were not as positive as we were hoping. In line
with our other results, we think that this approach was un-
successful largely because lower layers are unable to cap-
ture the complexity of augmentations. For future work, it
could be interesting to try this approach without changing
lower layers, and instead trying to get higher layers to em-
bed augmented images in the same embedding space as the
original images.


